

EMC TEST REPORT EN 55032:2015/A1:2020 EN 55035:2017/A11:2020 EN IEC 61000-3-2:2019/A1:2021 EN 61000-3-3:2013/A2:2021 MEASUREMENT AND TEST REPORT For

OpenVox Communication Co., Ltd.

Room 624, 6/F, Tsinghua Information Port, Qingqing Road, Longhua Street, Longhua District Shenzhen, Guangdong, China

Model:UC1000

2024-04-10

1	
This Report Con Original Report	cerns: Equipment Type:
2	E. E. E. E. Z. Z
Test Engineer:	Leon Gao/ Loon Caro
	· 收测标本
Report Number:	TH2403326-C02-R01
	A CHE S CONS
Test Date:	2024-03-28 to 2024-04-10
	~ 「「「「「「「」」」」
Reviewed By:	Neo Dong/ Neo Port 9 12
Approved By:	Prince Huang/ Rohe Huang
Prepared By:	Shenzhen Tian Hai Test Technology Co., Ltd.
S S	125-126, No.66, Zhangge Road, Zhangge Community, Fucheng
	Street, Longhua District, Shenzhen, Guangdong, China
	Tel : +86-755-86615100
	Fax: +86-755-86615105

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of TianHai Compliance Testing Laboratory Ltd.

TABLE OF CONTENTS

	1 - SUMMARY OF STANDARDS AND RESULTS	4
	1 - SUMMART OF STANDARDS AND RESULTS	4
	1.1 DESCRIPTION OF STANDARDS AND RESULTS	
	1.2 DESCRIPTION OF PERFORMANCE CRITERIA	5
	2 - GENERAL INFORMATION	6
		6
	2.2 STATEMENT OF THE MEASUREMENT UNCERTAINTY TEST FACILITY	0 6
	2.3 MEASUREMENT UNCERTAINTY	6
		7
	2.5 PRINCIPLE OF CONFIGURATION SELECTION	7
	2.6 TEST OPERATION	7
	2.7 SPECIAL ACCESSORIES AND ALIXILIARY FOLLIPMENT	7
		7
	3 - TEST EQUIPMENT LIST AND DETAILS	8
	4 - CONDUCTED EMISSION MEASUREMENT	A 11
		- 11
		۱۱ ۸۸
		۱۱ ۱۸
		۱۱ 10
	4.4 TEST RESULTS AND DATA	12
	5 - ASYMMETRIC MODE CONDUCTED EMISSION MEASUREMENT	14
	5.1 BLOCK DIAGRAM OF TEST SETUP	
	5.2 LIMITS	14
	5.3 TEST PROCEDURE	14
	5.4 TEST RESULTS AND DATA	
	C. DADIATED DISTUDBANCE MEASUDEMENT	Sac
	6 - RADIATED DISTURBANCE MEASUREMENT	10
	6.1 BLOCK DIAGRAM OF TEST SETUP	16
	6.2 LIMITS	16
	6.3 TEST PROCEDURE	17
	6.4 TEST RESULTS AND DATA	
	7 - HARMONIC CURRENT EMISSION MEASUREMENT	22
		ZZ
		22
2		
	8 - VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	23
	8.1 BLOCK DIAGRAM OF TEST SETUP	
	8.2 TEST STANDARD	23
	8.3 TEST PROCEDURE	23
	8.4 TEST RESULTS	23
		24
	9.1 ELECTROSTATIC DISCHARGE IMMUNITY TEST	24
	9.1.1 BLOCK DIAGRAM OF TEST SETUP	
	9.1.2 TEST SPECIFICATION	
	9.1.3 TEST PROCEDURE	24
	9.1.4 TEST RESULTS	25
	9.2 RADIO FREQUENCY ELECTROMAGNETIC FIELDS	
	9.2.1 DLUCK DIAGRAM OF 1E31 SETUP	26
		20
	9.2.3 TEST FRUGEDURE	∠0 ∽⊂
	3.2.7 TEST RESULTS	21
	9.3.1 BLOCK DIAGRAM OF TEST SETLIP	∠0 22
	9.3.2 TEST SPECIFICATION	20 28
	9.3.3 TEST PROCEDURE	20∠ 29
	9 3 4 TEST RESULTS	20 20
	94 SURGE IMMUNITY TEST	وے ۵۵
	9.4.1 BLOCK DIAGRAM OF TEST SETUP	30
	9.4.2 TEST SPECIFICATION	
		X
	Report No.: TH2403326-C02-R01 Page 2 of 48 EN 55032-2015/A1-2020 Rep	ort

Page 2 of 48

2	9.4.3 TEST PROCEDURE		<u> </u>	<u> </u>			
	9.4.4 TEST RESULTS				<u></u>		31
9.5	INJECTED CURRENTS SUSCEPTI	BILITY TEST	<u></u>				
	9.5.1 BLOCK DIAGRAM OF TES	ST SETUP		<u>_</u>			32
	9.5.2 TEST SPECIFICATION						32
	9.5.3 TEST PROCEDURE		<u>/</u>				
	9.5.4 TEST RESULTS	<u></u>	?				33
9.6	VOLTAGE DIPS AND INTERRUPTIC	ONS TEST					34
	9.6.1 BLOCK DIAGRAM OF TES	ST SETUP	<u></u>				34
	9.6.2 TEST SPECIFICATION		<u></u>	<u></u>	\sim		34
	9.6.3 TEST PROCEDURE				<u> </u>		
	9.6.4 TEST RESULTS						35
		CDADUS					26
APP	ENDIA A - TEST SETUP PHOTO	UKAF13		8	·····	<u> </u>	
APP	ENDIX B - EUT PHOTOGRAPHS	S		47		<u> </u>	

Report No.: TH2403326-C02-R01

Ð

Page 3 of 48

1 - SUMMARY OF STANDARDS AND RESULTS

1.1 DESCRIPTION OF STANDARDS AND RESULTS

The EUT have been tested according to the applicable standards as referenced below.

	EMIS	SION		
Description of Test Item	Test Standard	Basic Standard	Requirement	Results
Conducted disturbance	EN 55032:2015 /A1:2020	EN 55032:2015 /A1:2020	See Section 4	PASS
Asymmetric mode conducted emission	EN 55032:2015 /A1:2020	EN 55032:2015 /A1:2020	See Section 5	PASS
Radiated disturbance	EN 55032:2015 /A1:2020	EN 55032:2015 /A1:2020	See Section 6	PASS
Harmonic current emissions	EN IEC 61000-3-2 :2019/A1:2021	EN IEC 61000-3-2 :2019/A1:2021	See Section 7	PASS
Voltage fluctuations & flicker	EN 61000-3-3:2013 /A2:2021	EN 61000-3-3:2013 /A2:2021	See Section 8	PASS
	IMMU	INITY		
Description of Test Item	Test Standard	Basic Standard	Test configuration	Results
Electrostatic discharge (ESD)	EN 55035:2017 /A11:2020	IEC 61000-4-2:2008	See Section 9.1	PASS
Radio-frequency, Continuous radiated disturbance	EN 55035:2017 /A11:2020	IEC 61000-4-3:2020	See Section 9.2	PASS
Electrical fast transient (EFT)	EN 55035:2017 /A11:2020	IEC 61000-4-4:2012	See Section 9.3	PASS
Surge (Input a.c. power ports)	EN 55035:2017 /A11:2020	IEC 61000-4-5:2014 +AMD1:2017	See Section 9.4	PASS
Radio-frequency, Continuous conducted disturbance	EN 55035:2017 /A11:2020	IEC 61000-4-6:2013	See Section 9.5	PASS
Power frequency magnetic field*	HWH I H	Mer Mark	See Note	N/A
Voltage dips and interruptions	EN 55035:2017 /A11:2020	IEC 61000-4-11:2020	See Section 9.6	PASS

Note:

N/A is an abbreviation for Not Applicable

"*" : The EUT does not contain devices susceptible to magnetic fields; therefore the Power-Frequency Magnetic Fields test is not necessary.

Report No.: TH2403326-C02-R01

Page 4 of 48

Internal Source	Upper Frequency	AN		1×		Z
Below 108MHz	1GHz		Å		S	
108MHz to 500MHz	2GHz	K	H	Ś	117	
500MHz to 1GHz	5GHz	L.	LY .	11	L'H	L
Above 1GHz	5 times the highest	frequency or	· 6GHz, whiche	ever is less	Z	Z

1.2 DESCRIPTION OF PERFORMANCE CRITERIA

General Performance Criteria

General performance criteria are defined in 1.2.1, 1.2.2 and 1.2.3. These criteria shall be used during the testing of primary functions where no relevant annex is applicable. When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

1.2.1 Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2 Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3 Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report No.: TH2403326-C02-R01

Page 5 of 48

2 - GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST Client Information

Applicant:	OpenVox Communication Co., Ltd.
Address:	Room 624, 6/F, Tsinghua Information Port, Qingqing Road, Longhua Street, Longhua District, Shenzhen, Guangdong, China
Manufacturer:	OpenVox Communication Co., Ltd.
Address:	Room 201, Building I, Jinchangda, Building 00082, Shangwei Industrial Zone, Zhangkengjing Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China
General Descrip	otion of E.U.T
EUT Name:	IP-PBX
Trade Mark:	OpenVox
Model No.:	UC1000
Sample No.:	TH2403326
Ratings:	Input: AC 100-240V, 50/60Hz, 0.36A ,80W
Test Mode:	Normal Working
Note:	

2.2 STATEMENT OF THE MEASUREMENT UNCERTAINTY TEST FACILITY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration Limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.3 MEASUREMENT UNCERTAINTY

Test	Parameters	Expanded uncertainty (U _{lab})	Expanded uncertainty (U _{cispr})
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	\pm 2.52 dB \pm 2.36 dB	\pm 3.80 dB \pm 3.40 dB
Power disturbance	Level accuracy (30MHz to 300MHz)	\pm 3.20 dB	\pm 4.50 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	±3.10dB	N/A
Radiated emission	Level accuracy (30MHz to 1000MHz)	\pm 5.78dB	±6.30dB

Report No.: TH2403326-C02-R01

Page 6 of 48

		<u> </u>	
NEL .	Level accuracy (above 1000MHz)	±4.62dB	N/A
Mains Harmonic	Voltage	±1.80%	N/A
Voltage Fluctuations &	Voltage	±0.64%	N/A

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

(3) The measurement uncertainty is not included in the test result.

2.4 TEST LOCATION

All tests were performed at Shenzhen Tianhai Test Technology Co., Ltd. 125-126, No.66, Zhangge Road ,Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong Province, P.R. China

2.5 PRINCIPLE OF CONFIGURATION SELECTION

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use. Immunity: The equipment under test (EUT) was configured to have its highest possible susceptibility against the tested phenomena. The test modes were adapted accordingly in reference to the instructions for use.

2.6 TEST OPERATION

Test operation refers to test setup in chapter 4 & 5 & 6 & 7 & 8 & 9. Pretest in all operation modes, and find out the worst case for compliance test.

2.7 SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT

The EUT was tested together with the following accessories:

Kind of Equipment	Manufacturer	Туре	S/N
Notebook	DELL	Inspiron 3501	

The EUT was tested with following cables:

Cable name	Length (m)	Shield	Core No.	Detachable
LAN cable	1.8m	No	0 9	No

Report No.: TH2403326-C02-R01

Page 7 of 48

3 - TEST EQUIPMENT LIST AND DETAILS

I

Kind of Equipment	Manufacturer	Туре	S/N	Calibrate until
Conducted Emission	L L	Å	12	41
EMI Test Receiver	R&S	ESR7	102333	2024-11-13
L.I.S.N	Schwarzbeck	NNLK 8128	5089	2024-11-13
8-Wire ISN CAT6	Schwarzbeck	NTFM 8158	231	2024-11-13
Pulse Limiter	Schwarzbeck	VTSD 9561-F	847	2024-11-13
Test software	EZ	EMC-CON 3A1.1	1 5	41 5
Disturbance power	H.H.	HN FS	LI X	
EMI Test Receiver	R&S	ESR7	102333	2024-11-13
EMI Absorbing Clamp	Teseq	MDS 21B	58115	2024-11-20
Test software	EZ	EMC-CON 3A1.1	1 5	/
LLAS Radiated Distur	bance (2m)	24		
EMI Test Receiver	R&S	ESR7	102333	2024-11-13
Loop Antenna	Schwarzbeck	HXYZ 9170	353	2024-11-13
Test software	EZ	EMC-CON 3A1.1	1	1
Radiated Emission (3r	n) 🗢			Å
EMI Test Receiver	R&S	ESR7	102333	2024-11-13
MXA Signal Analyzer	Keysight	N9020A	MY51281805	2024-04-20
Bilog Antenna	Schwarzbeck	VULB 9168	01148	2024-11-20
Pre-Amplifier	Schwarzbeck	BBV 9718 B	00109	2024-11-13
Pre-Amplifier	Schwarzbeck	BBV 9743 B	00253	2024-11-13
Pre-Amplifier	GUANGGU ELECTRONIC	GLNA18-40GK- 5372	20210331001	2024-11-13
Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00148	2024-11-13
Horn Antenna	Schwarzbeck	BBHA 9120	02379	2024-11-20
Test software	FALA	1	FA-03A2 RE	1
Harmonics & Flicker	Å	S	5	
5kVA AC Power Source	AMETEK CTS	5001iX-CTS-400	2046A03237	2024-11-13
Signal Conditioning Unit	AMETEK CTS	PACS-1	2046A03238	2024-11-13
Test software	AMETEK CTS	CTS 4	Version 4.26.0	81
Electrostatic discharg	e (ESD)	2	4	4
ESD Simulator	TESEQ	NSG 437	1569	2024-11-15

Radio-frequency,Conti	nuous radiated	disturbance (RS)	11	-
Signal generator	R&S	SMB 100A	113650	2024-04-20
Power meter	Agilent	E4417A	MY45100899	2024-04-20
Power sensor	Agilent	E9321A	US40390494	2024-04-20
Power sensor	Agilent	E9322A	MY44420219	2024-04-20
Power amplifier	Micotop	MPA-80-1000- 250	MPA2112426	2024-04-20
Power amplifier	Micotop	MPA-1000-6000- 100	MPA2201013	2024-04-20
Stacked Log. Periodic Antenna	Schwarzbeck	STLP 9129	201	N/A
Field strength probe	PMM	EP601	811ZX10673	2024-04-20
RF Switch	Emtrace	SW X4	1	N/A
Test Software	Emtrace	EM 3	V1.2.1	N/A
Electrical fast transien	t (EFT)	4	A LA	23
Burst Tester	3C TEST	EFT 500T	ES027000120015	2024-11-13
Coupling Clamp	3C TEST	CCC 100	CCC 20092269	2024-11-13
CCS	3C TEST	V4.2.7	ES027000120015	1
Surge		29 A	4 4	E.
Surge simulator	3C TEST	CWS 600CT	ES058000920005	2024-11-13
Three phases CDN	3C TEST	SPN 3832T	ES0911910	2024-11-13
CDN for unshielded symmetrical high- speed Telecom cable	3C TEST	CDN405T8A	ES064001220010	2024-11-13
CDN for Telecom cable	3C TEST	CDN405M40-5	ES1071910	2024-11-13
CWS	3C TEST	V1.0.5.2	ES058000920005	F L
Radio-frequency,Conti	nuous conducte	d disturbance (CS)	The state	L.
Conducted Immunity Test System	3C TEST	CST 1075	ES096000120008	2024-11-13
6dB Attenuator	3C TEST	DTC75-6	ES095000120006	2024-11-13
Single phase CDN	3C TEST	CDN M2M3	ES064002620007	2024-11-13
Three phases CDN	3C TEST	CDN M5-16	ES064003320004	2024-11-13
Calibration Set	3C TEST	CDN 100KIT	ES064002820016	2024-11-13
Calibration Set	3C TEST	EM CL100KIT	EM C20032816	2024-11-13
EM-Clamp	3C TEST	EM CL100	EM C20032811	2024-11-13
EMC-s	SKET	V1.4.0.54	15	1 5

Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

Power Frequency Mag	netic Field (PFMF		a la	Ĺ.
PFMF simulator	3C TEST	MFS 400	ES045000720001	2024-11-13
Transformer	3C TEST	MFT 400	ES046000220003	2024-11-13
Magnetic field antenna	3C TEST	TCXS111	TCXS20060910	2024-11-13
CWS	3C TEST	V4.2.7	ES045000720001	1
Voltage dips &Voltage	interruptions	The second second	L°.	K K
Power failure simulator	3C TEST	PFS 2216SD	ES049001220003	2024-11-13
CCS	3C TEST	V4.2.8	ES049001220003	1 4

Report No.: TH2403326-C02-R01

Page 10 of 48

4 - CONDUCTED EMISSION MEASUREMENT

4.1 BLOCK DIAGRAM OF TEST SETUP

4.2 LIMITS

Frequency range	Class B Lim	its (dBμV)
(MHz)	Quasi-peak	Average
0.15 ~ 0.5	66 - 56	56 - 46
0.50 ~ 5	56	46
5 ~ 30	60	50

Remark: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 150 kHz to 0.5MHz.

(3) All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.3 TEST PROCEDURE

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through a Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.

The bandwidth of the field strength meter is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

Report No.: TH2403326-C02-R01

Page 11 of 48

4.4 TEST RESULTS AND	DATA
EUT:	IP-PBX
M/N:	UC1000
Test Mode:	Normal Working
Test Voltage :	AC 230V/50Hz
Temperature:	23 °C
Humidity:	55%
Atmosphere pressure:	101Kpa
Test Results:	Pass

Phase:L1

Ð

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.2850	39.90	10.60	50.50	60.67	-10.17	QP	P
2	0.2850	25.46	10.60	36.06	50.67	-14.61	AVG	P
3 *	0.4785	42.19	10.62	52.81	56.37	-3.56	QP	P
4	0.4920	27.48	10.62	38.10	46.13	-8.03	AVG	P
5	0.9555	13.41	10.66	24.07	46.00	-21.93	AVG	P
6	0.9645	28.34	10.66	39.00	56.00	-17.00	QP	P
7	1.3290	27.30	10.66	37.96	56.00	-18.04	QP	P
8	1.3425	11.22	10.66	21.88	46.00	-24.12	AVG	P
9	5.6390	27.53	10.72	38.25	60.00	-21.75	QP	P
10	5.6795	14.41	10.72	25.13	50.00	-24.87	AVG	P
11	11.4490	40.40	10.79	51.19	60.00	-8.81	QP	P
12	11.5075	29.79	10.79	40.58	50.00	-9.42	AVG	P

Report No.: TH2403326-C02-R01

Page 12 of 48

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1590	42.52	10.57	53.09	65.52	-12.43	QP	P
2	0.1680	23.61	10.57	34.18	55.06	-20.88	AVG	P
3	0.2580	38.47	10.59	49.06	61.50	-12.44	QP	P
4	0.2580	19.59	10.59	30.18	51.50	-21.32	AVG	P
5 *	0.4784	38.26	10.62	48.88	56.37	-7.49	QP	P
6	0.4784	21.77	10.62	32.39	46.37	-13.98	AVG	P
7	0.9645	25.36	10.66	36.02	56.00	-19.98	QP	P
8	0.9735	7.70	10.66	18.36	46.00	-27.64	AVG	P
9	5.2294	10.25	10.72	20.97	50.00	-29.03	AVG	P
10	5.3060	24.89	10.72	35.61	60.00	-24.39	QP	P
11	11.0844	26.65	10.85	37.50	50.00	-12.50	AVG	P
12	11.1430	36.60	10.85	47.45	60.00	-12.55	QP	P
								-

Report No.: TH2403326-C02-R01

(1

Page 13 of 48

5 - ASYMMETRIC MODE CONDUCTED EMISSION MEASUREMENT

5.1 BLOCK DIAGRAM OF TEST SETUP

5.2 LIMITS

Frequency range	Class B Lin	nits (dBµV)
(MHz)	Quasi-peak	Average
0.15 ~ 0.5	84-74	74-64
0.50 ~ 30	74	64

Remark: * means decreasing linearly with logarithm of frequency.

The lower limit shall apply at the transition frequencies.

5.3 TEST PROCEDURE

The EUT is put on the plane 0.8m high above the ground by insulating support and selecting ISN for unscreened cable or a current probe for screened cable to take measurement. The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.

Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.

The bandwidth of the field strength meter is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

Report No.: TH2403326-C02-R01

Page 14 of 48

2.02						12.0		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1598	46.71	20.23	66.94	83.47	-16.53	QP	P
2	0.1598	33.57	20.23	53.80	73.47	-19.67	AVG	P
3	0.3892	33.09	19.97	53.06	66.08	-13.02	AVG	P
4	0.3913	48.18	19.97	68.15	76.04	-7.89	QP	P
5	0.4736	34.94	19.93	54.87	64.45	-9.58	AVG	P
6	0.4786	48.91	19.92	68.83	74.36	-5.53	QP	P
7	0.6474	48.32	19.86	68.18	74.00	-5.82	QP	P
8	0.6543	34.05	19.86	53.91	64.00	-10.09	AVG	P
9	1.2823	48.47	19.76	68.23	74.00	-5.77	QP	P
10	1.3593	39.60	19.75	59.35	64.00	-4.65	AVG	P
11	1.7161	38.97	19.73	58.70	64.00	-5.30	AVG	P
12 *	2.0331	50.16	19.70	69.86	74.00	-4.14	QP	P

Report No.: TH2403326-C02-R01

Page 15 of 48

EN 55032:2015/A1:2020 Report

Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

6 - RADIATED DISTURBANCE MEASUREMENT

Page 16 of 48

Report No.: TH2403326-C02-R01

Above 1GHz

Frequency (MHz)	Clas Limits	s B at 3m
	Peak dB(µV/m)	Average
1000-3000	70	50
3000-6000	74	54

6.3 TEST PROCEDURE

a. The Product was placed on the non-conductive turntable 0.8/0.1 m above the ground at a chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW(Below 1GHz), 1MHz RBW(Above 1GHz). Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its QP or peak value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector / peak / AVG, and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Report No.: TH2403326-C02-R01

Page 17 of 48

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	34.7662	44.94	-13.70	31.24	40.00	-8.76	QP
2	58.7052	43.24	-16.09	27.15	40.00	-12.85	QP
3	81.1975	48.37	-19.95	28.42	40.00	-11.58	QP
4	138.8490	45.07	-15.71	29.36	40.00	-10.64	QP
5 *	208.2879	51.18	<mark>-18</mark> .15	33.03	40.00	-6.97	QP
6	966.0501	42.31	-2.60	39.71	47.00	-7.29	QP

Report No.: TH2403326-C02-R01

Page 18 of 48

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
34.7480	50.22	-13.70	36.52	40.00	-3.48	QP
58.7154	45.53	-16.09	29.44	40.00	-10.56	QP
79.7163	51.21	-19.89	31.32	40.00	-8.68	QP
138.4844	47.67	-15.74	31.93	40.00	-8.07	QP
408.0149	45.22	-12.18	33.04	47.00	-13.96	QP
981.2427	41.59	-2.48	39.11	47.00	-7.89	QP
	Frequency (MHz) 34.7480 58.7154 79.7163 138.4844 408.0149 981.2427	Frequency (MHz)Reading (dBuV)34.748050.2258.715445.5379.716351.21138.484447.67408.014945.22981.242741.59	Frequency (MHz)Reading (dBuV)Factor (dB/m)34.748050.22-13.7058.715445.53-16.0979.716351.21-19.89138.484447.67-15.74408.014945.22-12.18981.242741.59-2.48	Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)34.748050.22-13.7036.5258.715445.53-16.0929.4479.716351.21-19.8931.32138.484447.67-15.7431.93408.014945.22-12.1833.04981.242741.59-2.4839.11	Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)34.748050.22-13.7036.5240.0058.715445.53-16.0929.4440.0079.716351.21-19.8931.3240.00138.484447.67-15.7431.9340.00408.014945.22-12.1833.0447.00981.242741.59-2.4839.1147.00	Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)34.748050.22-13.7036.5240.00-3.4858.715445.53-16.0929.4440.00-10.5679.716351.21-19.8931.3240.00-8.68138.484447.67-15.7431.9340.00-8.07408.014945.22-12.1833.0447.00-13.96981.242741.59-2.4839.1147.00-7.89

Report No.: TH2403326-C02-R01

Page 19 of 48

Above 1GHz Polarization:Horizontal

No. Frequency (MHz) Frequency (MHz) 1 1252.491 1 2 1260.032 1 3 1767.560 1 4 1954.293 1 5 1954.468 1	Reading	Factor	Level	Limit	Margin	
1 1252.491 2 1260.032 3 1767.560 4 1954.293 5 1954.468 6 2584.065	(UDUV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
2 1260.032 3 1767.560 4 1954.293 5 1954.468 6 2584.065	49.57	-7.57	42.00	70.00	-28.00	peak
3 1767.560 4 1954.293 5 1954.468 6 2584.065	41.95	-7.55	34.40	50.00	-15.60	AVG
4 1954.293 5 1954.468 6 2584.065	49.55	-5.43	44.12	70.00	-25.88	peak
5 1954.468 6 2584.065	53.19	-4.54	48.65	70.00	-21.35	peak
6 2584 065	47.99	-4.54	43.45	50.00	-6.55	AVG
2001.000	45.14	-1.85	43.29	50.00	-6.71	AVG
7 2850.154	44.75	-0.79	43.96	50.00	-6.04	AVG
8 2852.964	53.58	-0.78	52.80	70.00	-17.20	peak
9 4243.982	54.41	3.35	57.76	74.00	-16.24	peak
10 4276.806	43.22	3.45	46.67	54.00	-7.33	AVG
11 4857.873	52.92	5.56	58.48	74.00	-15.52	peak
12 * 4857.873	43.17	5.56	48.73	54.00	-5.27	AVG

Report No.: TH2403326-C02-R01

Page 20 of 48

Polarization:Vertical dBuV/m 80.0 EN55032 RE-Class B Ab e 1Ghz 3M(Peak 70 60 50 40 30 20 10 0 -10 -20 1000.000 6000.000 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1464.167	49.04	-6.82	42.22	70.00	-27.78	peak
2	1589.530	42.22	-6.28	35.94	50.00	-14.06	AVG
3	1825.169	50.09	-5.15	44.94	70.00	-25.06	peak
4	2068.878	40.84	-4.02	36.82	50.00	-13.18	AVG
5	2530.231	43.18	-2.07	41.11	50.00	-8.89	AVG
6	2642.593	52.24	-1.62	50.62	70.00	-19.38	peak
7	2833.097	51.94	-0.85	51.09	70.00	-18.91	peak
8	2839.450	41.92	-0.84	41.08	50.00	-8.92	AVG
9	4844.834	36.83	5.51	42.34	54.00	-11.66	AVG
10	4863.969	49.76	5.59	55.35	74.00	-18.65	peak
11	5806.455	51.11	8.79	59.90	74.00	-14.10	peak
12 *	5806.455	41.66	8.79	50.45	54.00	-3.55	AVG

Report No.: TH2403326-C02-R01

Page 21 of 48

7 - HARMONIC CURRENT EMISSION MEASUREMENT

7.1 BLOCK DIAGRAM OF TEST SETUP

7.2 TEST STANDARD

Please refer to EN IEC 61000-3-2:2019/A1:2021

7.3 TEST PROCEDURE

a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the maximum harmonic components under normal Test Modes for each successive harmonic component in turn.

b. The correspondent test program of test instrument to measure the current harmonics emanated from Product was chosen. The measure time shall be not less than the time necessary for the Product to be exercised.

7.4 TEST RESULTS

PASS

Because power of EUT's rated power is 12W and less than 75W, According standard EN IEC 61000-3-2:2019/A1:2021, the result no judgment.

Report No.: TH2403326-C02-R01

Page 22 of 48

8 - VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

8.1 BLOCK DIAGRAM OF TEST SETUP

8.2 TEST STANDARD

Please refer to EN 61000-3-3:2013/A2:2021

8.3 TEST PROCEDURE

a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the most unfavorable sequence of voltage changes under normal Test Modes.

b. During the flick test, the measure time shall include that part of whole operation cycle in which the Product procedure the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

8.4 TEST RESULTS

PASS

The active power of the EUT is about 12W only, which unlikely to produce significant voltage fluctuation. Therefore no test was applied.

See "EN 61000-3-3:2013/A2:2021, clause 6.1" Tests need not be made on equipment which is unlikely to produce significant voltage fluctuations or flicker...."

Report No.: TH2403326-C02-R01

Page 23 of 48

9 - IMMUNITY TEST

9.1 ELECTROSTATIC DISCHARGE IMMUNITY TEST

9.1.1 BLOCK DIAGRAM OF TEST SETUP

Ground

9.1.2 TEST SPECIFICATION

Basic Standard Test Port Discharge Impedance Discharge Mode Discharge Period

IEC 61000-4-2:2008
Enclosure port
330 ohm / 150 pF
Single Discharge
one second between each discharge

9.1.3 TEST PROCEDURE

9.1.3.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all

the air discharge completed.

9.1.3.2. Contact Discharge

All the procedure shall be same as Section 9.1.3.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.1.3.3. Indirect Discharge for Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.1.3.4. Indirect Discharge for Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Report No.: TH2403326-C02-R01

Page 24 of 48

9.1.4 TEST RESULTS

Electrostatic Discharge						
Basic Standard:	IEC 61000-4-2:2008	6	L L			
EUT:	IP-PBX	L'	S X			
M/N:	UC1000	L.	N N			
Test Mode:	Normal Working	X X	x Zx	1		
Test Voltage:	AC 230V/50Hz	Z' K		AN		
Temperature: 📈	24.4°C			-		
Humidity:	58%	K	5			
Atmosphere pressure:	101Kpa	A L	L'	A		

Discharge Method	Discharge Position	Voltage (±kV)	N Dis (E	lin. No. of charge per polarity ach Point)	Performance criteria	Result
	Conductive Surfaces	4	X	10	В	Pass
Contact Discharge	Indirect Discharge HCP	4	SZ.	10	В	Pass
	Indirect Discharge VCP	4		10	В	Pass
Air Discharge	Slots, Apertures, and Insulating Surfaces	8	1/2	10	в	Pass

Report No.: TH2403326-C02-R01

Page 25 of 48

9.2 RADIO FREQUENCY ELECTROMAGNETIC FIELDS

9.2.1 BLOCK DIAGRAM OF TEST SETUP

80-1000MHz:

1000-6000MHz:

9.2.2 TEST SPECIFICATION

Basic Standard Test Port Step Size Modulation Dwell Time Polarization IEC 61000-4-3:2020 Enclosure port 1% 1kHz, 80% AM 1 second Horizontal & Vertical

9.2.3 TEST PROCEDURE

a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.

b. The frequency range is swept from 80MHz to 1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1%.

c. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.

Report No.: TH2403326-C02-R01

Page 26 of 48

9.2.4 TEST RESULTS

(1

Radio frequency electromagnetic fields					
Basic Standard:	IEC 61000-4-3:2020	()	\checkmark	4	
EUT:	IP-PBX	L.	L.	Z	
M/N:	UC1000	1/N	11	14	
Test Mode:	Normal Working	A.	L	X	1
Test Voltage:	AC 230V/50Hz	L'	Y		AN
Temperature:	24.4°C	K		4	Z
Humidity:	58%	~		5	
Atmosphere pressure:	101Kpa	L.	K	Z	K

Frequency (MHz)	Position	Field Strength (V/m)	Performance criteria	Result
k - Z	Front	\$ 3 ~	A	Pass
80 1000	Right	3	A	Pass
80 - 1000	Back	3	A	Pass
	Left	3	A	Pass
L?	Front	3	AX	Pass
1900	Right	3	A	Pass
1000	Back	3	A	Pass
Z	Left	3 <	A	Pass
	Front	3	A S	Pass 🔗
2600	Right	3	A	A Pass
2000	Back	3	A	Pass
L' L	Left	3 3	A	Pass
L' L'	Front	3	A	Pass
2500	Right	3	A	Pass
3500	Back	3	A	Pass
S	Left	3 3	A	Pass
L'	Front	3	X A L	Pass
5000	Right	3	A	Pass
0000	Back	3 4	A S	Pass S
7	Left	3	A	Pass 📈

Report No.: TH2403326-C02-R01

Page 27 of 48

9.3 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.3.1 BLOCK DIAGRAM OF TEST SETUP

Basic Standard Test Port Impulse Frequency Impulse Wave-shape Burst Duration Burst Period Test Duration IEC 61000-4-4:2012 input a.c.power port / signal port 5 kHz 5/50 ns 15 ms 300 ms 2 minutes per polarity

9.3.3 TEST PROCEDURE

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

9.3.3.1. For input and output AC power ports:

The EUT is connected to the AC power by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

9.3.3.2. For signal lines and control lines ports:

The EUT is connected to the signal line by using a coupling device which couples the EFT interference signal to signal lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

No I/O ports. It's unnecessary to test.

9.3.3.3. For DC output line ports:

No DC output ports. It's unnecessary to test.

Report No.: TH2403326-C02-R01

Page 28 of 48

9.3.4 TEST RESULTS

I

Electrical Fast Transient/Burst					
Basic Standard:	IEC 61000-4-4:2012	S	K	H	
EUT:	IP-PBX	11	S	Z	
M/N:	UC1000	L.	1	Z	
Test Mode:	Normal Working	No.	Z	X	
Test Voltage:	AC 230V/50Hz	2 5	2		
Temperature:	24.4 °C	\sim		1	K
Humidity:	58%	K		S	
Atmosphere pressure:	101Kpa	L'	~	L	

Line	Test Voltage	Performance criteria	Result	
A K	±1kV	В	Pass	
∠ ^N N	±1kV	В	Pass	
L-N	±1kV	В	Pass	
L PE	±1kV	В	Pass	
L-PE S	±1kV	AB 3	Pass	
N-PE	±1kV	J B J	Pass	
L-N-RE	±1kV	В	Pass	
LAN	±0.5kV	В	Pass	

Report No.: TH2403326-C02-R01

Page 29 of 48

9.4 SURGE IMMUNITY TEST

9.4.1 BLOCK DIAGRAM OF TEST SETUP

9.4.2 TEST SPECIFICATION

Basic Standard Test Port Wave-Shape

Pulse Repetition Rate Test Events

IEC 61000-4-5:2014+AMD1:2017 input a.c. power port /signal port Open Circuit Voltage - 1.2 / 50 us, 10/700us Short Circuit Current - 8 / 20 us, 5/320us 1 pulse / min. Five positive polarity pulses at the 90° phase angel Five negative polarity pulses at the 270° phase angel

9.4.3 TEST PROCEDURE

9.4.1.1. Set up the EUT and test generator as shown on Section 9.4.1.

9.4.1.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.

9.4.1.3. For Lan port to ground coupling mode, provide a 0.5 KV 10/700us voltage surge (at opencircuit condition) and 5/320us current surge to EUT selected points.

9.4.1.4. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test

9.4.1.5. Different phase angles are done individually.

9.4.1.6. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

Report No.: TH2403326-C02-R01

Page 30 of 48

9.4.4 TEST RESULTS

SURGE IMMUNITY					
IEC 61000-4-5:2014+AMD1:2017					
IP-PBX					
UC1000					
Normal Working					
AC 230V/50Hz					
24.4°C					
58%					
101Kpa					

	Line	Phase Angle	Test Voltage	Number of Pulse	Performance criteria	Result
		90°	_+ 1kV	5 8	В	Pass
L-N S	L-IN	270°	- 1kV	5	В	Pass
		90°	+ 2kV	5	В	Pass
L-PE	L-PE	270°	- 2kV	5	В	Pass
N-PE	90°	- 2kV	5	B	Pass 🖉	
	270°	+ 2kV	5	В	Pass	
	LAN	3 1 3	\pm 0.5kV	5	В	Pass

Report No.: TH2403326-C02-R01

Page 31 of 48

9.5 INJECTED CURRENTS SUSCEPTIBILITY TEST

9.5.1 BLOCK DIAGRAM OF TEST SETUP

9.5.2 TEST SPECIFICATION

Basic Standard Test Port Step Size Modulation Dwell Time IEC 61000-4-6:2013 input a.c. power port / signal port 1% 1kHz,80% AM 1 second

9.5.3 TEST PROCEDURE

For a.c. / d.c. power port

9.5.3.1. Set up the EUT, CDN and test generators as shown on Section 9.5.1.

9.5.3.2. Let the EUT work in test mode and measure it.

9.5.3.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

9.5.3.4. The disturbance signal described below is injected to EUT through CDN.

9.5.3.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.

9.5.3.6. The frequency range is swept from 150kHz to 10MHz using 3V, 10MHz to 30MHz using 3V to 1V,30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.

Report No.: TH2403326-C02-R01

Page 32 of 48

9.5.3.7. The rate of sweep shall not exceed 1.5*10 -3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

9.5.3.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

For signal / control lines:

9.5.3.9. The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support, and the telecommunication port under test was connected to support units through the current clamp.

9.5.3.10. The frequency range is swept from 150kHz to 10MHz using 3V, 10MHz to 30MHz using 3V to 1V,30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.

9.5.3.11. The rate of sweep shall not exceed 1.5*10 -3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

9.5.3.12. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

9.5.4 TEST RESULTS

INJECTED CURRENTS SUSCEPTIBILITY					
Basic Standard:	IEC 61000-4-6:2013				
EUT:	IP-PBX				
M/N:	UC1000				
Test Mode:	Normal Working				
Test Voltage:	AC 230V/50Hz				
Temperature:	24.4°C				
Humidity:	58%				
Atmosphere pressure:	101Kpa				

Frequency Range (MHz)	Injected Position	Strength (Non-modulated)	Performance criteria	Result
0.15 ~ 10	AC Mains	3V r.m.s.	A S	Pass
10 ~ 30	AC Mains	3V r.m.s. to 1V r.m.s.	A	Pass
30 ~ 80	AC Mains	1V r.m.s.	A	Pass
0.15 ~ 10 🔍	LAN	3V r.m.s.	A	Pass
<u></u> 10 ~ 30	LAN	3V r.m.s. to 1V r.m.s.	A	Pass
30 ~ 80	LAN	1V r.m.s.	LA S	Pass

Report No.: TH2403326-C02-R01

Page 33 of 48

9.6 VOLTAGE DIPS AND INTERRUPTIONS TEST

9.6.1 BLOCK DIAGRAM OF TEST SETUP

9.6.2 TEST SPECIFICATION

Basic Standard Test Port Phase Angle

IEC 61000-4-11:2020 input a.c. power port 0°, 180°

9.6.3 TEST PROCEDURE

- 9.6.3.1. Set up the EUT and test generator as shown on Section 9.6.1.
- 9.6.3.2. The interruptions is introduced at selected phase angles with specified duration.
- 9.6.3.3. Record any degradation of performance.

Report No.: TH2403326-C02-R01

Page 34 of 48

9.6.4 TEST RESULTS

VOLTAGE DIPS AND INTERRUPTIONS					
Basic Standard:	IEC 61000-4-11:2020				
EUT:	IP-PBX				
M/N:	UC1000				
Test Mode:	Normal Working				
Test Voltage:	AC 230V/50Hz & AC 120V/60Hz				
Temperature:	24.4°C				
Humidity:	58%				
Atmosphere pressure:	101Kpa				

AC 230V

Test Level % UT	Voltage Dips & Short Interruptions % UT	Duration (cycle) 50Hz	Performance criteria	Result
< 5	<u>9</u> 100	0.5	В	Pass
70	30	25	C	Pass
< 5	100	250	S C	Pass 🖉

AC 120V

Test Level % UT	Voltage Dips & Short Interruptions	Duration (cycle)	Performance	Result
	% UT	60Hz	criteria	
0 < 5	100	0.5	В	Pass
70 5	30	30	C	Pass
< 5	100	300	C	Pass

Report No.: TH2403326-C02-R01

Page 35 of 48

APPENDIX A - TEST SETUP PHOTOGRAPHS

Photographs 1: Set-up for Conducted disturbance at mains terminals

Photographs 2: Set-up for Asymmetric mode conducted emission

Report No.: TH2403326-C02-R01

Page 36 of 48

Photographs 3: Set-up for Radiated disturbance(below 1GHz)

Photographs 4: Set-up for Radiated disturbance(above 1GHz)

Report No.: TH2403326-C02-R01

Page 37 of 48

Photographs 5: Set-up for Electrostatic discharge (ESD)

Photographs 6: Set-up for Radio-frequency, Continuous radiated disturbance(RS)

Report No.: TH2403326-C02-R01

Page 38 of 48

Photographs 7: Set-up for Electrical fast transient (EFT)-AC power port

Photographs 8: Set-up for Electrical fast transient (EFT)-Signal port

Report No.: TH2403326-C02-R01

Page 39 of 48

Photographs 9: Set-up for Surge -AC power port

Photographs 10: Set-up for Surge -Signal port

Report No.: TH2403326-C02-R01

Page 40 of 48

Photographs 11: Set-up for Radio-frequency, Continuous conducted disturbance (CS)-AC power port

Photographs 12: Set-up for Radio-frequency, Continuous conducted disturbance (CS)-Signal port

Report No.: TH2403326-C02-R01

Page 41 of 48

Photographs 13: Set-up for Voltage dips &Voltage interruptions

Report No.: TH2403326-C02-R01

Page 42 of 48

APPENDIX B - EUT PHOTOGRAPHS

Report No.: TH2403326-C02-R01

Page 43 of 48

Report No.: TH2403326-C02-R01

Page 44 of 48

Report No.: TH2403326-C02-R01

Page 45 of 48

Report No.: TH2403326-C02-R01

Page 46 of 48

Report No.: TH2403326-C02-R01

Page 47 of 48

************END OF THE REPORT**********

Report No.: TH2403326-C02-R01

Ð

Page 48 of 48