

EMC TEST REPORT EN 55032:2015/A11:2020 EN 55035:2017/A11:2020 EN IEC 61000-3-2:2019 EN 61000-3-3:2013/A1:2019 MEASUREMENT AND TEST REPORT

OpenVox Communication Co., Ltd

Room 624, 6/F, TsingHua Information Port, QingQing Road, LongHua Street, LongHua District, ShenZhen,Guangdong,China

Model: MAG1000 2021-08-17 **Equipment Type:** This Report Concerns: **Original Report** Analog Gateway **Test Engineer:** Eric Tao/ **Report Number:** TH2108108-C01-R01 2021-08-13 to 2021-08-16 Test Date: **Reviewed By:** Prince Huang/ me Hunny Approved By: Prince Huang/ **Prepared By:** Shenzhen Tian Hai Test Technology Co., Ltd. 4F, A3 BLDG, The Silicon Valley Power intelligent terminal industrial park, Guanlan street, Longhua district, Shenzhen Tel: +86-755-86615100 Fax: +86-755-86615105

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of TianHai Compliance Testing Laboratory Ltd.

TABLE OF CONTENTS

1 - SUMMARY OF STANDARDS AND RES	ULTS			••••••	
1.1 DESCRIPTION OF STANDARDS AND RES 1.2 DESCRIPTION OF PERFORMANCE CRIT	ERIA			7	5
2 - GENERAL INFORMATION	<u></u>			\sim	6
2.1 PRODUCT DESCRIPTION FOR EQUIPME 2.2 STATEMENT OF THE MEASUREMENT UI 2.3 MEASUREMENT UNCERTAINTY 2.4 DESCRIPTION OF THE SUPPORT EQUIPME	NCERTAINTY TES	T FACILITY			
3 - TEST EQUIPMENT LIST AND DETAILS		à		47	
4 - CONDUCTED EMISSION MEASUREME					
4.1 BLOCK DIAGRAM OF TEST SETUP					
4.2 LIMITS		<u>></u>	S.	χ	9
4.3 TEST PROCEDURE 4.4 TEST RESULTS AND DATA					
5 - ASYMMETRIC MODE CONDUCTED EN					
5.1 BLOCK DIAGRAM OF TEST SETUP					
5.2 LIMITS 5.3 TEST PROCEDURE					
6 - RADIATED DISTURBANCE MEASURE					21
6.1 BLOCK DIAGRAM OF TEST SETUP					
6.2 LIMITS		5			14
6.3 TEST PROCEDURE					
6.4 TEST RESULTS AND DATA					
7 - HARMONIC CURRENT EMISSION MEA					
7.1 BLOCK DIAGRAM OF TEST SETUP 7.2 TEST STANDARD					
7.3 TEST PROCEDURE	<u></u>		<u></u>		
7.4 TEST RESULTS					
8 - VOLTAGE FLUCTUATION AND FLICK					
8.1 BLOCK DIAGRAM OF TEST SETUP 8.2 TEST STANDARD					
8.3 TEST PROCEDURE					
8.4 TEST RESULTS					
9 - ELECTROSTATIC DISCHARGE IMMUN	ITY TEST			X	
9.1 BLOCK DIAGRAM OF TEST SETUP					
9.2 TEST SPECIFICATION 9.3 TEST PROCEDURE					
9.4 TEST RESULTS					
10 - RADIO FREQUENCY ELECTROMAGN	NETIC FIELDS				24
10.1 BLOCK DIAGRAM OF TEST SETUP	P			9	
10.2 TEST SPECIFICATION				·····	
10.3 TEST PROCEDURE 10.4 TEST RESULTS					
11 - ELECTRICAL FAST TRANSIENT/BUR					
11.1BLOCK DIAGRAM OF TEST SETUP					
11.2 TEST SPECIFICATION		\sim		~~~	
11.3 TEST PROCEDURE 11.4 TEST RESULTS					
11.4 1EST KESULIS	<u>z</u>	κ.	Å	κ.	
Report No.: TH2108108-C01-R01	Page 2 of 36	15	EN 550	32:2015/A11:2020) Report

4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

L'AND L'	L.	L'	N	\leq	
12 - SURGE IMMUNITY TEST					
12.1 BLOCK DIAGRAM OF TEST SETU	Ρ	X	9	<u>~</u>	
12.2 TEST SPECIFICATION					
12.3 TEST PROCEDURE					
12.4 TEST RESULTS			<u> </u>		
13 - INJECTED CURRENTS SUSCEP	TIBILITY TEST	19	÷.	<u>4</u> 3	
13.1 BLOCK DIAGRAM OF TEST SETU	P	K 3	5	1 2	30
13.2 TEST SPECIFICATION					
13.3 TEST PROCEDURE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	\sim		30
13.4 TEST RESULTS	X		~~		
14 - VOLTAGE DIPS AND INTERRUP	~			K	
14.1 BLOCK DIAGRAM OF TEST SETUR 14.2 TEST SPECIFICATION	Ρ				
14.2 TEST SPECIFICATION	<u></u>				
14.3 TEST PROCEDURE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
14.4 TEST RESULTS				5	
APPENDIX A - EUT PHOTOGRAPHS	N. S.	X	<u>Z</u>	\sim	

Report No.: TH2108108-C01-R01

Page 3 of 36

EN 55032:2015/A11:2020 Report

1 - SUMMARY OF STANDARDS AND RESULTS

1.1 DESCRIPTION OF STANDARDS AND RESULTS

The EUT have been tested according to the applicable standards as referenced below.

EMISSION (EN 55032:2015/A11:2020)

Description of Test Item	Test Standard	Requirement	Results
Conducted disturbance at mains terminals	EN 55032:2015/A11:2020	Class A	PASS
Asymmetric mode conducted emission	EN 55032:2015/A11:2020	Class A	PASS
Radiated disturbance	EN 55032:2015/A11:2020	Class A	PASS
Harmonic current emissions	EN IEC 61000-3-2:2019	1 5	N/A
Voltage fluctuations & flicker	EN 61000-3-3:2013/A1:2019	16 5	N/A
I	MMUNITY (EN 55035:2017/	A11:2020)	
Description of Test Item	Test Standard	Test configuration	Results
Electrostatic discharge (ESD)	IEC 61000-4-2:2008	Air Discharge:±8KV Contact Discharge: ±4kV	PASS
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3:2006+AMD1: 2007+AMD2:2010	1%, 1kHz, 80% AM 80~1000MHz,1800MHz 2600MHz,3500MHz 5000MHz,3V/m	PASS
Electrical fast transient (EFT)	IEC 61000-4-4:2012	AC Input Power: ±1kV Signal Line: ±0.5kV Tr/Td 5/50 ns, 5kHz	PASS
Surge (Input a.c. power ports)	IEC 61000-4-5:2014+AMD1: 2017	AC Input Port: 1.2/50(8/20)Tr/Th us line to line: ±1.0kV line to PE: ±2.0kV Signal port:±0.5kV	PASS
Radio-frequency, Continuous conducted disturbance	IEC 61000-4-6:2013	1%1kHz, 80% AM Mod., 0.15MHz-10MHz:3V 10MHz-30MHz: 3V to 1V 30MHz-80MHz:1V	PASS
Power frequency magnetic field*	IEC 61000-4-8:2009	North I	N/A
Voltage dips, <5% reduction		0.5T	PASS
Voltage dips, 70% reduction	IEC 61000-4-11:2004	25T for 50Hz	PASS

4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

Voltage interruptions, <5% reduction	THAN I AND	250T for 50Hz	PASS
N/A is an abbreviation for Not A	pplicable.	Ś	L'

"*": The EUT does not contain devices susceptible to magnetic fields; therefore the Power-Frequency Magnetic Fields test is not necessary.

1.2 DESCRIPTION OF PERFORMANCE CRITERIA

General Performance Criteria

General performance criteria are defined in 8.2, 8.3 and 8.4. These criteria shall be used during the testing of primary functions where no relevant annex is applicable. When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

1.2.1 Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2 Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3 Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Report No.: TH2108108-C01-R01

Page 5 of 36

EN 55032:2015/A11:2020 Report

2 - GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST Client Information

Applicant:	OpenVox Communication Co., Ltd	
appriount.		

Address: Room 624, 6/F, TsingHua Information Port, QingQing Road, LongHua Street, LongHua District, ShenZhen,Guangdong,China

Manufacturer: OpenVox Communication Co., Ltd

Room 201A,2/F,Building 2, Asian Industrial Park,Fengmen Road,Bantian Street, longgang District,Shenzhen,Guangdong, China

General Desc	ription of E.U.T	
EUT Name:	Analog Gateway	
Trade Mark:	OpenVox	
Model No.:	MAG1000	
Ratings:	AC100-240V, 35W	
Test Mode:	1:Full System 2:LAN port 1000Mb	ps
Note:	L' L'	

Address:

2.2 STATEMENT OF THE MEASUREMENT UNCERTAINTY TEST FACILITY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration Limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Report No.: TH2108108-C01-R01

Page 6 of 36

EN 55032:2015/A11:2020 Report

2.3 MEASUREMENT UNCERTAINTY

Test Item	Test Items	Results	Limits
		Results	Linits
Conducted disturbance	Level accuracy(9kHz to 150kHz)	±2.63 dB	\pm 3.8 dB
ES F	(150kHz to 30MHz)	\pm 2.35 dB	\pm 3.4 dB
Padiated disturbance	30MHz to 1GHz	\pm 5.78dB	\pm 6.3dB
Radiated disturbance	1GHz to 6GHz	\pm 4.62dB	\pm 6.3dB

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

2.4 DESCRIPTION OF THE SUPPORT EQUIPMENTS

Setup Diagram

See test photographs attached in appendix B for the actual connections between EUT and support equipment.

Support Equipment

No.	Instrument	Manufacturer	Model No.	S/N	Next Cal. Date	Calculator due date
/	19	/	814	14	1 ~	1 Lu

Note: All the above equipment /cable were placed in worse case position to maximize emission signals during emission test.

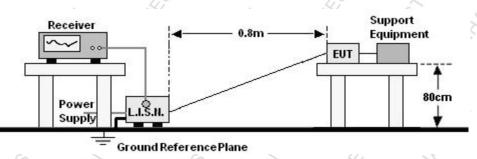
Report No.: TH2108108-C01-R01

Page 7 of 36

EN 55032:2015/A11:2020 Report

3 - TEST EQUIPMENT LIST AND DETAILS

Kind of Equipment	Manufacturer	Туре	S/N	Calibrate until
Conducted Emission	4	S	E L	, L
EMI Test Receiver	R&S	ESRP3	102242	2022-01-03
L.I.S.N	Schwarzbeck	NNLK 8128	5089	2022-01-03
8-Wire ISN CAT6	Schwarzbeck	NTFM 8158	231	2022-01-03
Pulse Limiter	Schwarzbeck	VTSD 9561-F	00723	2022-01-03
Radiated Emission (3m	i)	Y.	N	N.
EMI Test Receiver	, R&S	ESR7	102333	2022-01-03
Bilog Antenna	Schwarzbeck	VULB 9168	01148	2022-01-20
Pre-Amplifier	Schwarzbeck	BBV 9718 B	00109	2022-01-03
Pre-Amplifier	Schwarzbeck	BBV 9743 B	00253	2022-01-03
Horn Antenna	Schwarzbeck	BBHA 9120	02379	2022-01-21
ESD	Y.	Y X	I L	Ľ
ESD Simulator	TESEQ	NSG 437	1569	2021-11-16
RS	J.		K.	K
Signal Generator	Agilent	M5181A	MY47420649	2021-09-06
Power Meter	Agilent	E4419B	GB43312510	2021-09-06
Bi-Log Antenna	Schwarzbeck	STLP 9128 E	3142	2023-09-10
Horn Antenna	Schwarzbeck	00270	00270	2023-09-10
Power Transmitter	KEYSIGHT	E9301A	MY41069009	2021-09-06
Power Transmitter	KEYSIGHT	E9301A	MY41069011	2021-09-06
EFT	No.	S.		R
Burst Tester	3C test	EFT 500T	ES027000120015	2021-11-12
Coupling Clamp	3C test	CCC 100	CCC 20092269	2021-11-12
Surge ??		B. K	L'	L L
Surge simulator	3C test	CWS 600CT	ES058000920005	2021-11-12
Three phases CDN	3C test	SPN 3832T	ES0911910	2021-11-12
CDN for unshielded symmetrical high- speed Telecom cable	3C test	CDN405T8A	ES064001220010	2021-11-12
CDN for Telecom cable	3C test	CDN405M40-5	ES1071910	2021-11-12
Radio-Frequency Cont	inuous Conduc	ted (CS)	X A	X
Conducted Immunity Test System	3C test	CST 1075	ES096000120008	2021-11-12
Voltage Dips and Interi	ruptions	N. C.	N.	2°
Power failure simulator		PFS 2216SD	ES049001220003	2021-11-12


Report No.: TH2108108-C01-R01

Page 8 of 36

EN 55032:2015/A11:2020 Report

4 - CONDUCTED EMISSION MEASUREMENT

4.1 BLOCK DIAGRAM OF TEST SETUP

4.2 LIMITS

Frequency range	Class A Lin	nits (dBµV)
(MHz)	Quasi-peak	Average
0.15 ~ 0.5	79	66
0.50 ~ 30	73	60

4.3 TEST PROCEDURE

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through a Line Impedance Stability Network (L.I.S.N). This provided a 500hm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.

The bandwidth of the field strength meter is set at 9kHz.

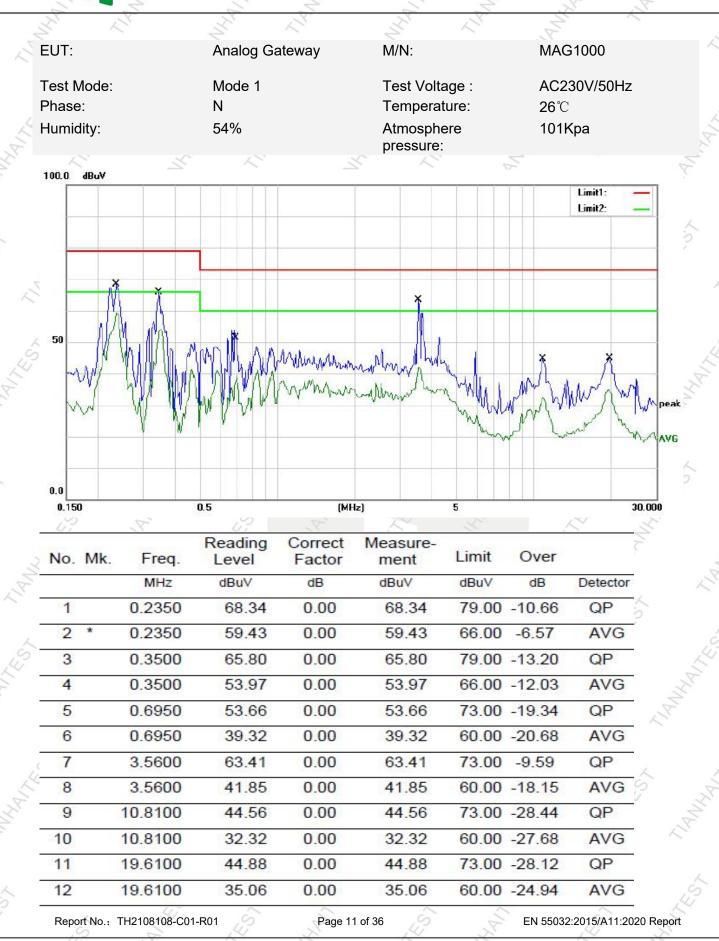
The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

Report No.: TH2108108-C01-R01

Page 9 of 36

EN 55032:2015/A11:2020 Report

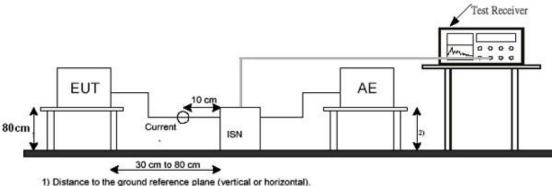
4 TEST	RESULTS A	AND DATA	~	M	~	1 St	
JT:	1	Analog Ga	ateway	M/N:		MA	G1000
est Mode:		Mode 1		Test Volt	•		230V/50Hz
nase:		L1		Tempera		26°	
umidity:		54%		Atmosph pressure:		101	Кра
100.0 dBu	v S		F.		Â	2	
							Limit1: Limit2:
5							
	x						
		7		×			
50		1 XM					
A	V NAME IN	CWG WW	Mountur	inny 4	Mundia	Å	Å
V N	THE WA	ANNIN	Manuth	handhin Mm	milling	AND A	Mar An
	111117 1111				M.	WWY all	()
NV	WW	W U C.			WY	A DATE Y	hummer 1
	WW	-ψ.Υ			W.	instan	hummer 1
0.0	WW				ww	mart	hann 1
0.0 0.150	WV	0.5		MHz)	5	met	
	. Freq.	0.5 Reading Level	Correct Factor	MHz) Measure- ment	5 Limit	Over	
0.150	. Freq. MHz	Reading	Correct	Measure-	20 (10)	Over	Detector
0.150 No. Mk. 1	MHz 0.2350	Reading Level dBuV 67.69	Correct Factor dB 0.00	Measure- ment dBuV 67.69	Limit dBuV 79.00	dB -11.31	QP
0.150 No. Mk. 1 2 *	MHz 0.2350 0.2350	Reading Level dBuV 67.69 58.99	Correct Factor dB 0.00 0.00	Measure- ment dBuV 67.69 58.99	Limit dBu∨ 79.00 66.00	dB -11.31 -7.01	QP AVG
0.150 No. Mk. 1 2 * 3	MHz 0.2350 0.2350 0.2350 0.3450	Reading Level dBuV 67.69 58.99 64.28	Correct Factor dB 0.00 0.00 0.00	Measure- ment dBu∨ 67.69 58.99 64.28	Limit dBu∨ 79.00 66.00 79.00	dB -11.31 -7.01 -14.72	QP AVG QP
0.150 No. Mk. 1 2 * 3 4	MHz 0.2350 0.2350 0.3450 0.3450	Reading Level dBuV 67.69 58.99 64.28 55.59	Correct Factor dB 0.00 0.00 0.00 0.00	Measure- ment dBu∨ 67.69 58.99 64.28 55.59	Limit dBu∨ 79.00 66.00 79.00 66.00	dB -11.31 -7.01 -14.72 -10.41	QP AVG QP AVG
0.150 No. Mk. 1 2 * 3 4 5	MHz 0.2350 0.2350 0.3450 0.3450 0.3450 0.5900	Reading Level dBuV 67.69 58.99 64.28 55.59 51.05	Correct Factor dB 0.00 0.00 0.00 0.00 0.00	Measure- ment dBu∨ 67.69 58.99 64.28 55.59 51.05	Limit dBuV 79.00 66.00 79.00 66.00 73.00	dB -11.31 -7.01 -14.72 -10.41 -21.95	QP AVG QP AVG QP
0.150 No. Mk. 1 2 * 3 4 5 6	MHz 0.2350 0.2350 0.3450 0.3450 0.3450 0.5900 0.5900	Reading Level dBuV 67.69 58.99 64.28 55.59 51.05 41.69	Correct Factor dB 0.00 0.00 0.00 0.00 0.00 0.00	Measure- ment dBu∨ 67.69 58.99 64.28 55.59 51.05 41.69	Limit dBu∨ 79.00 66.00 79.00 66.00 73.00 60.00	dB -11.31 -7.01 -14.72 -10.41 -21.95 -18.31	QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 * 3 4 5 6 7	MHz 0.2350 0.2350 0.3450 0.3450 0.3450 0.5900 0.5900 3.5500	Reading Level dBuV 67.69 58.99 64.28 55.59 51.05 41.69 62.10	Correct Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Measure- ment dBu∨ 67.69 58.99 64.28 55.59 51.05 41.69 62.10	Limit dBu∨ 79.00 66.00 79.00 66.00 73.00 60.00 73.00	dB -11.31 -7.01 -14.72 -10.41 -21.95 -18.31 -10.90	QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 2 * 3 4 5 6 7 8	MHz 0.2350 0.2350 0.3450 0.3450 0.5900 0.5900 3.5500 3.5500	Reading Level dBuV 67.69 58.99 64.28 55.59 51.05 41.69 62.10 40.53	Correct Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Measure- ment dBuV 67.69 58.99 64.28 55.59 51.05 41.69 62.10 40.53	Limit dBu∨ 79.00 66.00 79.00 66.00 73.00 60.00 73.00 60.00	dB -11.31 -7.01 -14.72 -10.41 -21.95 -18.31 -10.90 -19.47	QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 * 3 4 5 6 7	MHz 0.2350 0.2350 0.3450 0.3450 0.3450 0.5900 0.5900 3.5500	Reading Level dBuV 67.69 58.99 64.28 55.59 51.05 41.69 62.10	Correct Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Measure- ment dBu∨ 67.69 58.99 64.28 55.59 51.05 41.69 62.10	Limit dBu∨ 79.00 66.00 79.00 66.00 73.00 60.00 73.00 60.00 73.00	dB -11.31 -7.01 -14.72 -10.41 -21.95 -18.31 -10.90	QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 2 * 3 4 5 6 7 8 9	MHz 0.2350 0.2350 0.3450 0.3450 0.5900 0.5900 3.5500 3.5500 10.7800	Reading Level dBuV 67.69 58.99 64.28 55.59 51.05 41.69 62.10 40.53 43.61	Correct Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Measure- ment dBuV 67.69 58.99 64.28 55.59 51.05 41.69 62.10 40.53 43.61	Limit dBu∨ 79.00 66.00 79.00 66.00 73.00 60.00 73.00 60.00 73.00 60.00	dB -11.31 -7.01 -14.72 -10.41 -21.95 -18.31 -10.90 -19.47 -29.39	QP AVG QP AVG QP AVG QP AVG QP


4F,A3 BLDG, The Silicon Valley Power intelligent terminal industrial park, Guan lan street, Longhua district, Shenzhen

EN 55032:2015/A11:2020 Report

Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

Page 10 of 36


Report No.: TH2108108-C01-R01

4F,A3 BLDG, The Silicon Valley Power intelligent terminal industrial park, Guan lan street, Longhua district, Shenzhen

5 - ASYMMETRIC MODE CONDUCTED EMISSION MEASUREMENT

5.1 BLOCK DIAGRAM OF TEST SETUP

2) Distance to the ground reference plane is not critical.

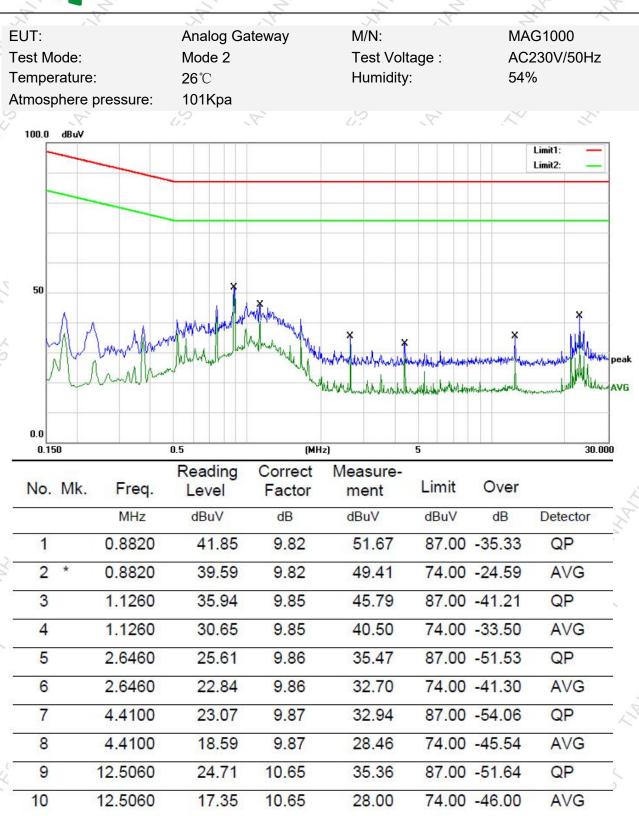
5.2 LIMITS

Frequency range	Class A Limi	its (dBμV)
(MHz)	Quasi-peak	Average
0.15 ~ 0.5	97 to 87	84 to 74
0.50 ~ 30	87	74

5.3 TEST PROCEDURE

The EUT is put on the plane 0.8m high above the ground by insulating support and selecting ISN for unscreened cable or a current probe for screened cable to take measurement. The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.

Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.


The bandwidth of the field strength meter is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

Report No.: TH2108108-C01-R01

Page 12 of 36

EN 55032:2015/A11:2020 Report

Report No.: TH2108108-C01-R01

22.9060

22.9060

11

12

31.44

24.94

Page 13 of 36

10.69

10.69

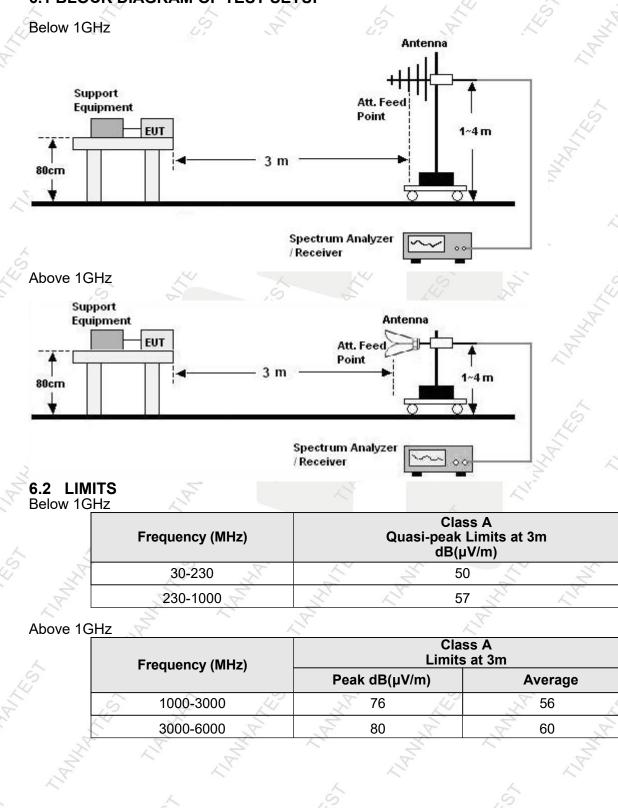
EN 55032:2015/A11:2020 Report

QP

AVG

87.00 -44.87

74.00 -38.37


4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

42.13

35.63

6 - RADIATED DISTURBANCE MEASUREMENT

6.1 BLOCK DIAGRAM OF TEST SETUP

Report No.: TH2108108-C01-R01

Page 14 of 36

EN 55032:2015/A11:2020 Report

6.3 TEST PROCEDURE

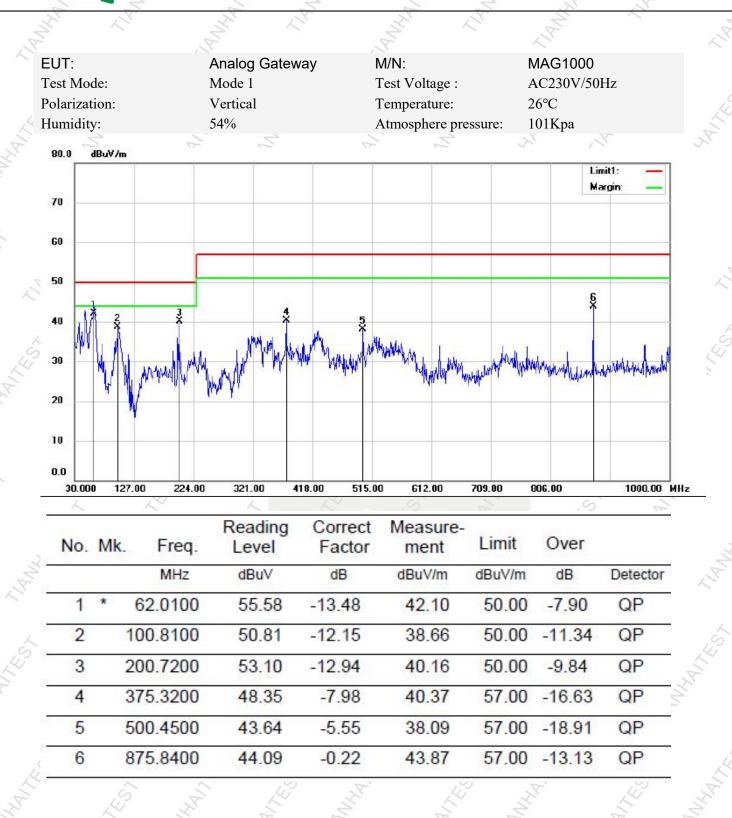
a. The Product was placed on the non-conductive turntable 0.8/0.1 m above the ground at a chamber.

b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value

Report No.: TH2108108-C01-R01

Page 15 of 36


EN 55032:2015/A11:2020 Report

F	~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	T.	~	2	X
			ID DATA	2	NY Y	2	AN	
Below 1	GHz	~			X		11.01000	
EUT:			Analog Gate	eway	M/N:		MAG1000	
Test Mod			Mode 1		Test Voltage :		AC230V/50	Hz
Polarizat			Horizontal		Temperature:		26°C	
Humidity	/:		54%		Atmosphere pr	ressure: 1	01Kpa	
80.0	dBuV/m	6	G	7	5 6	1	2	1
	ubuttin				1		Lim	it1: —
192,220							Ma	gin:
70								
60		-						
50								
		2	3	4	5		6 X	
40	ł	×	In the later	h lu Î	5			
			6 Mun Nr W	My AMAY WAY	My Mu			
30	, hll	I MANAA	WWW W		4 MAATHAMAN	My my filler after a	Hud and the los	Bud at A Al
1.W		W VIVY			s met toto toto sola sola da	and a subtra	Ashukin Mikhak	Chadrener's Physical
20	THY WAY				·			
10								
0.0	0 127.00	224.00	321.00	418.00 511	5.00 612.00	709.00 8	06.00	1000.00 M
	,0 121.00	~	~		6	100.00	6	
			Reading	Correct	t Measure	20.	1.124	
No.	Mk.	Freq.	Level	Factor		Limit	Over	
004032-890 3		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
<i>.</i>		Avoirest-	0.14222-02642-0	0.922.051	22.001060012 002	VALUE CONTRACTOR	Canada.	Delector
1	109	.5400	52.72	-12.60	40.12	50.00	-9.88	QP
2	* 177	.4400	56.79	-14.29	42.50	50.00	-7.50	QP
		.4400	50.13	-14.20	42.00	50.00	-1.50	1025
3	342	.3400	54.54	-8.30	46.24	57.00	-10.76	QP
4	500	.4500	50.04	-5.55	44.49	57.00	-12.51	QP
4	500	.4000	50.04	-0.00	44.43	51.00	-12.01	Q1
5	625	.5800	46.15	-2.99	43.16	57.00	-13.84	QP
6	975	.8400	46.95	-0.22	46.73	57 00	-10.27	QP
0	013	.0400	40.00	-0.22	40.75	57.00	-10.27	Q1
	~	~		0 57		~) (1	

Report No.: TH2108108-C01-R01

Page 16 of 36

EN 55032:2015/A11:2020 Report

Report No.: TH2108108-C01-R01

Page 17 of 36

EN 55032:2015/A11:2020 Report

bove	1GHz		ANY	~	ANK	Ľ	1AN	
EUT:		Analog Ga	ateway	M/N:		MAG	1000	
			Mode 1		Test Voltag	ge :	AC23	0V/50Hz
olariz	ation:		Horizontal		Temperatur	re:	26°C	
Iumid	ity:		54%		Atmospher	e pressure:	101Kj	pa
	2		6 2		6	2	X	X
100.0	dBuV <i>1</i> m				1	5		Limit1: —
90 -								Limit2: —
				-				
80								
70								
60				_				
50					5	Zinter	3	horastal applied and a filmed
40	here aberbard with	when when	Annu matched and man	Midden March 401	una manufara a mandre	2.		12
30	description of the				ş	8	10 ¥	Ť
20			×	*				
20								
10 -								
1000	.000 1500.	00 2000	.00 2500.00	3000.00 350	10.00 4000.00	4500.00	5000.00	6000.00
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	26	635.000	52.90	-10.76	42.14	76.00	-33.86	peak
2	26	635.000	37.06	-10.76	26.30	56.00	-29.70	AVG
3	32	205.000	51.07	-8.35	42.72	80.00	-37.28	peak
4	32	205.000	35.15	-8.35	26.80	60.00	-33.20	AVG
5	37	40.000	51.34	-7.21	44.13	80.00	-35.87	peak
6	37	740.000	36.91	-7.21	29.70	60.00	-30.30	AVG
7	45	5 <mark>10.000</mark>	52.00	-5.27	46.73	80.00	-33.27	peak
8	45	510.000	35.37	-5.27	30.10	60.00	-29.90	AVG
9	48	315.000	52.32	-4.45	47.87	80.00	-32.13	peak
10	48	315.000	37.25	-4.45	32.80	60.00	- <mark>27.20</mark>	AVG
11	55	510.000	52.24	-2.05	50.19	80.00	-29.81	peak
12	* 55	5 <mark>10.000</mark>	37.75	-2.05	35.70	60.00	-24.30	AVG
		19		14	4	4	4	4

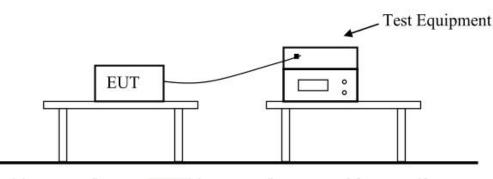
Report No.: TH2108108-C01-R01 Page 18 of 36

EN 55032:2015/A11:2020 Report

 $4F,\!A3\,BLDG,\!The\,Silicon\,Valley\,Power\,intelligent\,terminal\,industrial\,park,\!Guan\,lan\,street,\!Longhua\,district,\!Shenzhen\,Silicon\,Valley\,Power\,intelligent\,terminal\,industrial\,park,\!Guan\,lan\,street,\!Longhua\,district,\!Shenzhen\,Silicon\,Valley\,Silicon\,Silico$

2,	N		Z		2		12	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, K	
EUT: Test Mo Polariza Iumidi	ation:		Mod	izontal	eway		Tem	Volta peratu	-	ire.	MAG1 AC230 26°C 101Kp	0V/50Hz
luiinui	ي. ح		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, 2	2		~~	ospiici	e presse			
100.0	dBuV/m				5			1			Limi	it1: —
90											Limi	it2: —
80					-	_			_	_		
70												
60					-							
50					-				7		9	11 X
40		and the Americans		An and the state	1	May when when	A And And	human	monter	huhuhun	and the property was	www.huidh
30	HANDAN AND AND AND AND AND AND AND AND AN	anter the physical	anglodensharbert	Mar Alana			4	6	8		10 *	12 X
20					¥		Î					
10 0.0												
1000.	.000 1500.	.00 2000	.00 250	0.00 3	000.00	3500.00	D 400	0.00	4500.00	500	0.00	6000.00
No.	Mk.	Freq.		ading evel	Con Fac	rect ctor		sure- ent	Limi	t	Over	
		MHz	d	BuV	dE	3	dBu	V/m	dBuV	/m	dB	Detecto
1	30	060.000) 5	1.33	-8.	66	42	.67	80.0	00	-37.33	peak
2	30	060.000) 3	5.36	-8.	66	26	.70	60.0	00	-33.30	AVG
3	37	740.000) 5	0.33	-7.	21	43	.12	80.0	00	-36.88	peak
4	37	740.000) 3	6.11	-7.	21	28	.90	60.0	00	-31.10	AVG
5	42	280.000) 5	1.26	-5.	89	45	.37	80.0	00	-34.63	peak
6	42	280.000) 3	5.99	-5.	89	30	.10	60.0	00	-29.90	AVG
7	45	575.000) <mark>5</mark>	2.42	-5.	10	47	.32	80.0	00	-32.68	peak
8	45	575.000) 3	7.50	-5.	10	32	.40	60.0	00	-27.60	AVG
9	50	085.000) 5	0.57	-3.	63	46	.94	80.0	00	-33.06	peak
10	50	085.000	3	5.13	-3.	63	31	.50	60.0	00	-28.50	AVG
11	58	385.000) 4	9.76	-0.0	66	49	.10	80.0	00	-30.90	peak
12	* 58	385.000	3	4.46	-0.	66	33	.80	60.0	00	-26.20	AVG
12.000	1.10	Ś	SI 95	1	1980	Ţ.	192.9%	ACCESS OF		.4	in the second	

Report No.: TH2108108-C01-R01 Page


Page 19 of 36

EN 55032:2015/A11:2020 Report

 $4F,\!A3\,BLDG,\!The\,Silicon\,Valley\,Power\,intelligent\,terminal\,industrial\,park,\!Guan\,lan\,street,\!Longhua\,district,\!Shenzhen\,Silicon\,Valley\,Power\,intelligent\,terminal\,industrial\,park,\!Guan\,lan\,street,\!Longhua\,district,\!Shenzhen\,Silicon\,Valley\,Silicon\,Valley\,Silicon$

7 - HARMONIC CURRENT EMISSION MEASUREMENT

7.1 BLOCK DIAGRAM OF TEST SETUP

7.2 TEST STANDARD

Please refer to EN IEC 61000-3-2:2019

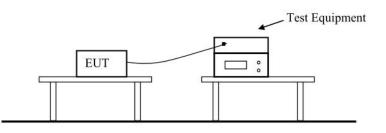
7.3 Test procedure

a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the maximum harmonic components under normal Test Modes for each successive harmonic component in turn.

b. The correspondent test program of test instrument to measure the current harmonics emanated from Product was chosen. The measure time shall be not less than the time necessary for the Product to be exercised.

7.4 TEST RESULTS

Because power of EUT's rated power is 35W and less than 75W, According standard EN IEC 61000-3-2:2019, the result no judgment.


Report No.: TH2108108-C01-R01

Page 20 of 36

EN 55032:2015/A11:2020 Report

8 - VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

8.1 BLOCK DIAGRAM OF TEST SETUP

8.2 TEST STANDARD

Please refer to EN 61000-3-3:2013/A1:2019

8.3 TEST PROCEDURE

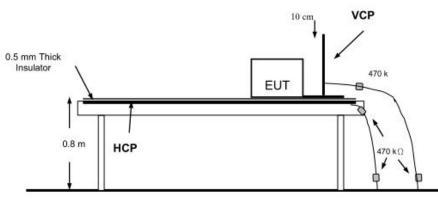
a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the most unfavorable sequence of voltage changes under normal Test Modes.

b. During the flick test, the measure time shall include that part of whole operation cycle in which the Product procedure the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

8.4 TEST RESULTS

The active power of the EUT is about 35W only, which unlikely to produce significant voltage fluctuation. Therefore no test was applied.

According to EN 61000-3-3:2013/A1:2019, clause 6.1"... Tests need not be made on equipment which is unlikely to produce significant voltage fluctuations or flicker...."


Report No.: TH2108108-C01-R01

Page 21 of 36

EN 55032:2015/A11:2020 Report

9 - ELECTROSTATIC DISCHARGE IMMUNITY TEST

9.1 BLOCK DIAGRAM OF TEST SETUP

Ground

9.2 TEST SPECIFICATION

Basic Standard Test Port Discharge Impedance Discharge Mode Discharge Period IEC 61000-4-2:2008

Enclosure port

330 ohm / 150 pF

: Single Discharge

: one second between each discharge

9.3 TEST PROCEDURE

9.3.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.3.2. Contact Discharge

All the procedure shall be same as Section 9.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.3.3. Indirect Discharge for Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.3.4. Indirect Discharge for Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Report No.: TH2108108-C01-R01

Page 22 of 36

EN 55032:2015/A11:2020 Report

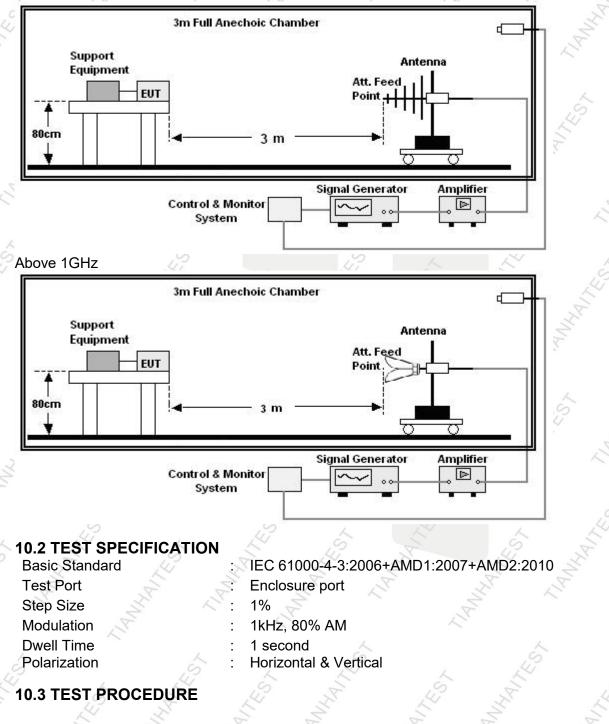
4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

9.4 TEST RESULTS

Electrostatic Discharge						
Basic Standard	IEC 61000-4-2:2008	L.	~	Z		
ÊUT 🔊	Analog Gateway	417	4	1 A		
M/N <	MAG1000	Z'	A.	2		
Test Mode	Mode 1	X	L L			
Temperature:	24°C	1	7	L.		
Humidity:	60%		2	K		
Atmosphere pressure:	101Kpa	S	L 44	0		
Criterion:	B	5 0	A C	1		

Discharge Method	Discharge Position	Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Required Performance	Actual performance	Result
S	Indirect Discharge HCP	4	10	В	Э В	Pass
Contact	Indirect Discharge VCP	4	10	S B	В	Pass
Discharge	Surface	94	10	И В Х	в	Pass
ALL A	RJ21/ console/LAN/ power port	4	10	В	BX	Pass
Air Discharge	Indicator light	8	10	В	AB	Pass

Report No.: TH2108108-C01-R01


Page 23 of 36

EN 55032:2015/A11:2020 Report

10 - RADIO FREQUENCY ELECTROMAGNETIC FIELDS

10.1 BLOCK DIAGRAM OF TEST SETUP

a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.

Report No.: TH2108108-C01-R01

Page 24 of 36

EN 55032:2015/A11:2020 Report

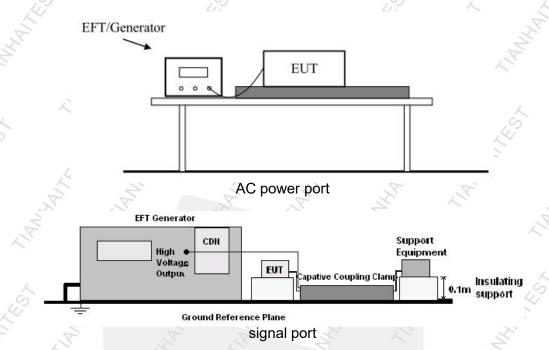
b. The frequency range is swept from 80MHz to 1000MHz, 1800MHz, 2600MHz, 3500MHz, 6000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1%.

c. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.

10.4 TEST RESULTS

R	adio frequency electromagnetic fields
Basic Standard	IEC 61000-4-3:2006+AMD1:2007+AMD2:2010
EUT	Analog Gateway
M/N	MAG1000
Test Mode	Mode 1
Temperature:	24°C
Humidity:	60%
Atmosphere pressure:	101Kpa
Criterion:	A

Frequency (MHz)	Position	Field Strength (V/m)	Required Performance	Actual performance	Result
1/2	Front	3	A	A	Pass
90 1000	A Back	3	A	A	Pass 🔗
80 - 1000	Left	3	A	A	Pass
S	Right 6	3	A 2	A	Pass
L H	Front	3	A	A	Pass
\$ 1000 \$	Back	3	$A \land$	AS	Pass
1800	Left	3	A	A	Pass
	Right	3	A	A	Pass
Å	Front	3	A	A	Pass
0000	Back	43	A	A	Pass
2600	Left	\$ 3 4	A	A	Pass
Ľ.	Right	3 7	Ā	A	Pass 🔬
Z	Front S	3	A	SA A	Pass 🖉
2500	Back	3	A	A	Pass
3500	Left	3	A	А	Pass
1	Right	3	S A	A S	Pass
S	Front	× 3 ×	A A	A	Pass
C000 S	Back	23 8	A L	A	Pass
6000	Left	3 3	A	A	Pass
H.	Right	3	A	A X	Pass


Report No.: TH2108108-C01-R01

Page 25 of 36

EN 55032:2015/A11:2020 Report

11 - ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

11.1BLOCK DIAGRAM OF TEST SETUP

11.2 TEST SPECIFICATION

Basic Standard Test Port Impulse Frequency Impulse Wave-shape Burst Duration Burst Period Test Duration IEC 61000-4-4:2012 input a.c.power/signal port 5 kHz 5/50 ns 15 ms 300 ms 2 minutes per polarity

11.3 TEST PROCEDURE

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

11.3.1. For input and output AC power ports:

The EUT is connected to the AC power by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

11.3.2. For signal lines and control lines ports:

The EUT is connected to the signal line by using a coupling device which couples the EFT interference signal to signal lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

Report No.: TH2108108-C01-R01

Page 26 of 36

EN 55032:2015/A11:2020 Report

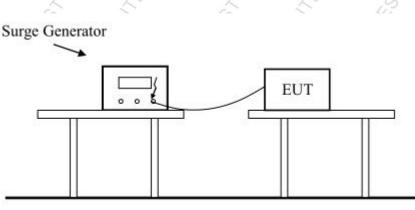
11.3.3. For DC output line ports:

No DC output ports. It's unnecessary to test.

11.4 TEST RESULTS

	Electrical Fast Transient/Burst	
Basic Standard	IEC 61000-4-4:2012	
EUT X	Analog Gateway	K
M/N<	MAG1000	~~
Test Mode	Mode 1,Mode 2	
Temperature:	24°C	j.
Humidity:	60%	R
Atmosphere pressure:	101Kpa	X
Criterion:	A	Z

Line	Test Voltage	Required Performance	Actual performance	Result
L-N	±1kV	В	A S	Pass
SL-PE Z	±1kV	Z B X	A	Pass
N-PE 🔨	\pm 1kV	B	А	Pass
L-N-PE	±1kV	В	А	Pass
LAN	\pm 0.5kV	В	AG	Pass


Report No.: TH2108108-C01-R01

Page 27 of 36

EN 55032:2015/A11:2020 Report

12 - SURGE IMMUNITY TEST

12.1 BLOCK DIAGRAM OF TEST SETUP

12.2 TEST SPECIFICATION

Basic Standard Test Port Wave-Shape

Pulse Repetition Rate Test Events IEC 61000-4-5:2014+AMD1:2017 input a.c. power/signal port Open Circuit Voltage - 1.2 / 50 us Short Circuit Current - 8 / 20 us 1 pulse / min. Five positive/negative polarity pulses at the90°,270° phase angel

12.3 TEST PROCEDURE

12.3.1. Set up the EUT and test generator as shown on Section 12.1.

12.3.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.

12.3.3. The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestors were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

12.3.4. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test

12.3.5. Different phase angles are done individually.

12.3.6. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

Report No.: TH2108108-C01-R01

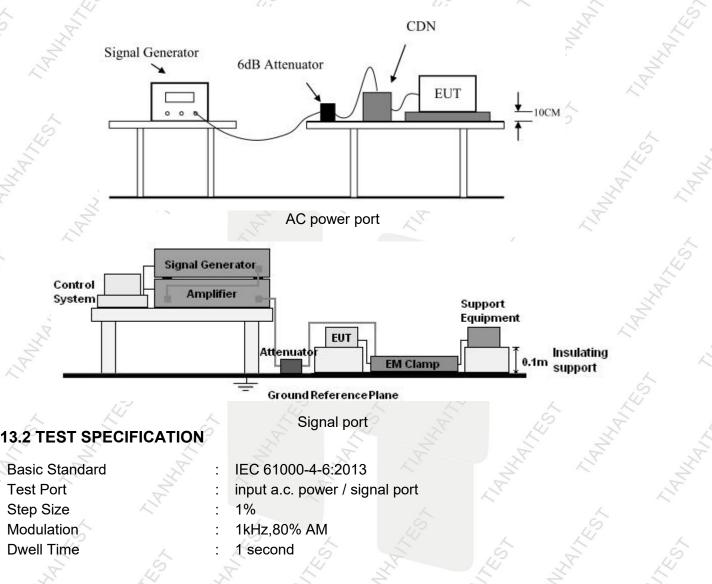
Page 28 of 36

EN 55032:2015/A11:2020 Report

12.4 TEST RESULTS

SURGE IMMUNITY						
Basic Standard	IEC 61000-4-5:2014+AMD1:2017					
EUT X	Analog Gateway					
M/N S	MAG1000					
Test Mode	Mode 1, Mode 2					
Temperature:	24°C					
Humidity:	60%					
Atmosphere pressure:	101Kpa					
Criterion:	ACALL					

				7 1	2
Line	Phase Angle	Test Voltage	Required Performance	Actual performance	Result
	90°	±1kV	В	A	Pass
C L-N	270°	$\pm 1 kV$	S B	A	Pass
L-PES	90°	±2kV	B	A	Pass
L-PES	270°	±2kV	В	A	Pass 🔄
N-PE	90°	±2kV	В	A	Pass X
NAFE	270°	± 2 kV	В	A	Pass
LAN	1 8	\pm 0.5kV	В	A A	Pass
				A	


Report No.: TH2108108-C01-R01

Page 29 of 36

EN 55032:2015/A11:2020 Report

13 - INJECTED CURRENTS SUSCEPTIBILITY TEST

13.1 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST PROCEDURE

13.3.1. Set up the EUT, CDN and test generators as shown on Section 13.1.

13.3.2. Let the EUT work in test mode and measure it.

13.3.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

13.3.4. The disturbance signal described below is injected to EUT through CDN.

13.3.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.

Report No.: TH2108108-C01-R01

Page 30 of 36

EN 55032:2015/A11:2020 Report

4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

13.3.6. The frequency range is swept from 150kHz to 10MHz using 3V, 10MHz to 30MHz using 3V to 1V,30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.

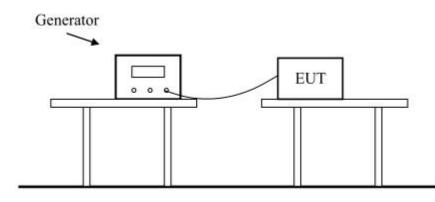
13.3.7. The rate of sweep shall not exceed 1.5*10 -3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

13.3.8. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

13.4 TEST RESULTS

	INJECTED CURRENTS SUSCEPTIBILITY
Basic Standard	IEC 61000-4-6:2013
EUT	Analog Gateway
M/N	MAG1000
Test Mode	Mode 1, Mode 2
Temperature:	24°C
Humidity:	60%
Atmosphere pressure:	101Kpa
Criterion:	A A A A A A A A A A A A A A A A A A A

Frequency Range (MHz)	Injected Position	Strength (Non-modulated)	Required Performance	Actual performance	Result
0.15 ~ 10	AC power	3V r.m.s.	S A S	A S	Pass
10 ~ 30	AC power	3V r.m.s.to 1V r.m.s.	$A \ge$	A	Pass
30 ~ 80	AC power	1V r.m.s.	A	A	Pass
0.15 ~ 10	LAN 💉	3V r.m.s.	A	A	Pass
10 ~ 30	LAN	3V r.m.s.to 1V r.m.s.	A	A	Pass
30 ~ 80	LAN	1V r.m.s.	A	A	Pass


Report No.: TH2108108-C01-R01

Page 31 of 36

EN 55032:2015/A11:2020 Report

14 - VOLTAGE DIPS AND INTERRUPTIONS TEST

14.1 BLOCK DIAGRAM OF TEST SETUP

14.2 TEST SPECIFICATION

Basic Standard Test Port Phase Angle IEC 61000-4-11:2004 input a.c. power port 0°, 180°

14.3 TEST PROCEDURE

14.3.1. Set up the EUT and test generator as shown on Section 14.1.

14.3.2. The interruptions is introduced at selected phase angles with specified duration.

14.3.3. Record any degradation of performance.

14.4 TEST RESULTS

VOLTAGE DIPS AND INTERRUPTIONS							
Basic Standard	IEC 61000-4-11:2004	N. N					
EUT	Analog Gateway		ž.				
M/N	MAG1000	5	5				
Test Mode	Mode 1	Nº N	14				
Temperature:	24°C	H H	H.				
Humidity:	60%	Z Z	A				
Atmosphere pressure:	101Kpa	AX XX	K N				
Criterion:	B	L'AND	L.X				

Test Level % UT	Voltage Dips & Short Interruptions % UT	Duration (in periods)	Required Performance	Actual performance	Result
< 5	2 100	0.5	B	З В	Pass
70	2 30 5	25	SC S	F B S	Pass
< 5	100 🔿	250	2 C	ВЗ	Pass

Report No.: TH2108108-C01-R01

Page 32 of 36

EN 55032:2015/A11:2020 Report

APPENDIX A - EUT PHOTOGRAPHS

Report No.: TH2108108-C01-R01

Page 34 of 36

EN 55032:2015/A11:2020 Report

**********END OF THE REPORT*********

Report No.: TH2108108-C01-R01

Page 36 of 36

EN 55032:2015/A11:2020 Report